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We calculate the electrical conductivity of single-layer graphene within the regime of massless Dirac fer-
mions. We consider the electron-LO-phonon interactions as the dominant scattering mechanism. By using the
Green’s-function method, we are able to obtain the quantitative contribution from the five leading diagrams in
the high-frequency approximation. It is found that electron-LO-phonon interactions cause an increase to the
electromagnetic absorption of single-layer graphene of as much as 20% at room temperature. The spectrum is
dominated by a continuum contribution with a peak at �=�LO /2 and represents intraband transitions. The
temperature and doping dependence of these peak corrections is also investigated. These results probe the
validity of the universal conductivity of graphene with respect to electron-phonon interactions under a range of
conditions.
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I. INTRODUCTION

Since the isolation of single layers of graphite in 2003,1 a
lot of exciting work on single-layer graphene has been done.2

For example, the prediction and observation of electron-hole
symmetry and a half-integer quantum Hall effect,3–5 finite
conductivity at zero charge-carrier concentration,3 the strong
suppression of weak localization,6–8 and universal
conductance.9–11

The “universal” conductance of graphene is a remarkable
ac phenomenon. It is a direct result of the linear energy dis-
persion of graphene. Linear subbands imply both a constant
density of states as well as consistent transition matrix ele-
ments, which means that for as long as the linear �Dirac�
approximation is valid, the conductance is a constant. The
value of the universal conductance of single-layer graphene
is �0=e2 /4�. This result is easily achieved by several meth-
ods. In particular, the Kubo formula yields this result when
the interaction Hamiltonian is assumed to be negligible.

Deviations from universal conductance have been shown
to occur due to variations in geometry,12,13 field energy,14,15

and field strength.16,17 It need not be demonstrated that the
effect of finite temperature on the distribution functions, as
well as doping to create an effective band gap between avail-
able states, will also alter the value of �0, especially at lower
energies.

In fact, the optical properties of graphene-based systems
have become quite an active field of research. After the ini-
tial flurry of excitement that followed the demonstration of
the universal conductivity at energies as high as the optical
regime—a direct demonstration of the accuracy of the Dirac
band structure—there has been increasing interest in
graphene-based materials for photonic applications, as well
as the realization of graphene’s potential in the terahertz-far
infrared �THz-FIR� regime, which have lead to some very
interesting results. The optical properties of bilayer graphene
have been studied extensively, both theoretically13,18–20 and
experimentally.12,21 Bilayer graphene, while having a base-
line optical conductivity of, unsurprisingly, �BLG=2�0, ex-
hibits a much stronger response of �BLG�6�0–8�0 at char-
acteristic energies which are proportional to the interlayer

coupling, ��0.3 eV.13 When confining single-layer and bi-
layer graphene into pseudo-one-dimensional structures called
graphene nanoribbons, the continuous optical conductivity
has been found to disappear and the emergence of sharp
resonant peaks are observed. These peaks are tunable by an
external magnetic field,22 and in the case of bilayer ribbons,
a two order of magnitude increase in the THz-FIR conduc-
tivity has been predicted, and is tunable via a strong width
dependence.23

This strong and varied optical activity, particularly in the
THz-FIR regime, makes graphene-based materials potential
candidates for future photonic applications. Returning to in-
trinsic single-layer graphene however, no such strong re-
sponse has been predicted, except outside of the Dirac
regime.14 The continuum absorption due to the linear Dirac
band structure, in general, remains. However, it has long
been known that nonlinear effects in a material are absent if
it has a strictly parabolic band structure. It has recently been
shown that graphene’s linear subband structure leads to a
very strong nonlinear optical conductance, particularly at
relatively low energies—the THz-FIR regime.17 Further-
more, mechanical stretching has been shown to induce a
strong transverse conductivity in graphene which can be as
strong as �xy ��0 for quite low stretching amounts.24

With all these predictions having emerged, the optical
properties of graphene-based systems appear to be more sig-
nificant and more versatile than perhaps previously believed.
However, a rather fundamental issue remains unsolved: What
is the effect of electron-phonon coupling on these properties?
Will the predicted properties remain at, say, room tempera-
ture?

With these questions in mind, we have investigated the
impact of electron-phonon coupling on the ac conductivity of
graphene-based systems. While these calculations are only
strictly relevant for two-dimensional single-layer graphene,
the results will inform our understanding of the contribution
of electron-phonon interactions to the ac conductivity of
graphene systems, in general, and serve as a starting point for
further theoretical and experimental investigation.

In this paper, we evaluate the finite-temperature effect of
the contribution to the optical conductivity obtained when
electron-LO-phonon interactions are included in the optical
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conductance calculation. Related work was previously done
via corrections to the self-energy of the electron
propagators.25,26 These do not include exchange and correla-
tion in the conductivity matrix elements but instead act as
corrections to the electronic band structure. Here we will
calculate the effects of exchange and correlation via a
perturbation-theory expansion of the electron-phonon inter-
action Hamiltonian. The choice of which terms to include in
the calculation will be determined diagrammatically with a
simple high-frequency approximation. The electron-LO-
phonon interaction contribution to the universal conductivity
of graphene that we obtain is relatively small but becomes
significant as temperature is sufficiently increased. More-
over, the nature of electron-LO-phonon interactions in
graphene is further understood by these results.

II. THEORY

Let us consider low-energy electrons in graphene which
are described by the massless Dirac Hamiltonian,

H = H0 + HI, �1�

where H0 is the Hamiltonian of noninteracting electrons and
phonons,

H0 = − vF�
k,s

ksck,s
† ck,−s + �

q
�qbq

†bq. �2�

Here vF=3t /2, where t�2.7 eV is the first nearest-neighbor
hopping amplitude, s= �1, and k�=kx� iky, and ck�bk� is
the electron �phonon� annihilation operator whose Hermitian
conjugate is a creation operator, and �q is the LO-phonon
frequency. HI is the electron-LO-phonon interaction term,

HI = �
k,q,s,s�

Fs,s��k,q�Mqck+q,s
† ck,s��bq + b−q

† � , �3�

where Fs,s��k ,q� is the electron transition matrix element
which will be calculated in due course, Mq is the electron-
phonon coupling strength which, in the case of LO phonons,
has no q dependence but is given by a constant. We shall
neglect the spin degree of freedom in our calculation.

The single-particle eigenvalues and eigenvectors can be
written as

�k,s = svF�k� �4�

and

�s�k� =
1
�2

�sei	�k�

1
� , �5�

where 	�k�=tan−1�ky /kx�. The corresponding fermion field
operators have the form 
s�r�=�k�s�k�eik·rck,s, from
which the current operator is given as j�

=e2�s,s�,k,k�	k� ,s���H0 /�k��k ,s
.
The Kubo formula for electrical conductivity is given by27

��,��q,�� =
1

�
�

0




dtei�t	�j�
† �q,t�, j��q,0�

 . �6�

The time dependence of an operator is given by O�t�
=eiHtOe−iHt. In order to represent the Kubo formula in terms

of Green’s functions, we need to find the ensemble average
with the complete ground state including interactions. So the
current-current correlation function of Eq. �6� takes the form

M���q,t� =
1

V
	Tj�

† �q,t�j��q,0�
 , �7�

where the required ground state cannot be determined ana-
lytically. Here T is the time-ordering operator. In the interac-
tion picture, we describe our ground state without interac-
tions and explicitly introduce interactions as a perturbation
such that

M���q,t� =
1

V
0	Tj�

† �q,t�U���j��q,0�
0

0	U���
0
, �8�

where the subscript 0 implies the unperturbed ground state
of Eq. �5�. We now exploit the well-known existence of
a Dyson’s equation for the correlation function which
simplifies our correlation function significantly such that

M���q,t� =
1

V 0	Tj�
† �q,t�U���j��q,0�
0

connected, �9�

where connected refers to the consideration of only con-
nected Feynman diagrams. The interaction term U��� is

U��� = exp�− �
0

�

duHI�u�� . �10�

Writing out all terms explicitly, we have

M���q,t� =
1

V
�

�1,�2,�3,�4

�
k,k�

v�,�1,�2

� �p + q�v�,�3,�4
�p�

�0	T�cp+q,�1

† cp,�2
�1 + HI + HI

2/2

+ ¯�cp+q,�3

† cp,�4


0, �11�

where the integration over each interaction Hamiltonian is
assumed, and v�,i,j�k�= 	k , i��H0 /�k��k , j
. In the expansion
of the exponential, the term with no interaction is the single-
loop optical conductivity which, in the case of Dirac
graphene, yields the universal value �0=e2 /4h. All higher-
order terms are corrections due to the electron-phonon inter-
action ��eph���
, which we will choose a subclass of below.
The total longitudinal optical conductivity of graphene then,
is given by

�xx�yy���� = �0 + �eph��� =
e2

4h
+ �eph��� . �12�

From now on we will neglect the constant universal conduc-
tivity, and focus solely on the subclass of diagrams chosen to
approximate �eph���.

Our system is isotropic, and so we will drop the indices
� ,� from now on, and expect the Hall contribution to be
zero. The Green’s function described above will give us the
phonon contribution to the longitudinal conductivity of
graphene within the Dirac regime and under the high-
frequency approximation. We have expanded Eq. �10� to sec-
ond order in Eq. �11�, which will be the maximum order used
here. We can, of course, obtain the Green’s function M�q , t�
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to arbitrary order of interaction. We restrict our attention to
terms with equal numbers of bubbles and interaction lines
which is the five diagrams given in Fig. 1. The interactions
are given by the random-phase approximation �RPA� series
and are shown in Fig. 2. The reason for this, aside from the
desire to include screening, is that the approximation of
equal numbers of bubbles and interactions is precisely ful-
filled by the infinite RPA series. The effective interaction
obtained via the RPA approximation is

V�q,�m� = V0�q,�m� + V0�q,�m���q,�m�V�q,�m�

→ V�q,�m�

=
V0�q,�m�

1 − V0�q,�m���q,�m�
. �13�

Here ��q ,�m� is the electronic polarizability given by

��q,�m� = �
k,s,s�

�	k + q,s��k,s
�2�nF��k+q,s�� − nF��k,s�


�k+q,s� − �k,s − �m
.

�14�

In Eq. �13� V0=M2D0�q ,�m�, where D0 is the bare phonon
propagator given by D0�q ,�m�=

2�LO

�m
2 −�LO

2 for the LO branch.
The effective interaction from Eq. �13� can then be written as

V�q,�m� =
2�LO

�m
2 − �LO

2 − 2�LO��q,�m�
. �15�

Using the five diagrams from Fig. 1, we obtain five sepa-
rate correlation functions such that Eq. �11� can be written as
M�q , t�=�i

5Mi�q , t�, where the index i corresponds to the
five diagrams from Fig. 1 and in terms of bare Green’s func-
tions are written as �listed according to the figure from left to
right, top to bottom�

M�1��q,t� = �
l,m

V�1,�2,�3,�4
�q,�m�Gk,�1

��l + �n�Gk+q,�2

���l + �m + �n�Gk+q,�3
��l + �m�

�Gk,�4
��l�F�1�2

�q�F�4�3

� �q�v�2�3
v�4�1

,

M�2��q,t� = �
l,m

V�1,�2,�2,�3
�q,�m�Gk,�1

��l + �n�

�Gk+q,�2
��l + �m + �n�Gk,�3

��l + �n�

�Gk,�4
��l�F�2�1

�q�F�2�3

� �q�v�3�4
v�4�1

,

M�3��q,t� = �
l,m

V�2,�3,�3,�4
�q,�m�Gk,�1

��l + �n�

�Gk+q,�2
��l�Gk,�3

��l + �m�Gk,�4
��l�

�F�3�2
�q�F�3�4

� �q�v�1�2
v�4�1

,

M�4��q,t� = �
l,l�,m

V�1,�2,�6,�5
�q,�m + �n�Gk,�1

��l + �n�

�Gk+q,�2
��l + �m�Gk,�3

��l�F�2�1
�q�F�2�3

�

��q�v�3�1
v�5�6

V�2,�3,�6,�5
�k,�m�Gk�+q,�4

���l� + �m�Gk�,�5
��l� + �n�

�Gk�,�6
��l��F�4�6

�q�F�4�5

� �q� ,

M�5��q,t� = �
l,l�,m

V�1,�2,�4,�5
�q,�m�Gk,�1

��l + �n�

� Gk+q,�2
��l + �m + �n�Gk,�3

��l�F�2�1
�q�F�2�3

�

��q�v�3�1
v�5�6

V�2,�3,�6,�5

� �q,�m + �n�Gk�+q,�4
��l� + �m + �n�Gk�,�5

���l� + �n�Gk�,�6
��l��F�4�6

�q�F�4�5

� �q� , �16�

where the sum over subbands and momenta are implied.

FIG. 1. The five diagrams which contribute to the high-
frequency correction to the optical conductivity.

FIG. 2. The effective interaction is given by the bare phonon
propagator plus an intermediate electron-phonon interaction, which
causes a density fluctuation described by the electron propagator
loop, followed by an effective interaction. This diagram describes
the infinite sum implied by Eqs. �13� and �15�. Taking the effective
interaction to be of this form is equivalent to adopting the RPA
approximation.
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Here G is the electron Green’s function given by Gk,�n
��l�

= 1
�l−�k,�n

. Using this form of the electron Green’s function, the

l summation is readily performed by the residue theorem
with simple poles. To proceed with the m summation, how-
ever, we cannot use the residue method because the interac-
tions are dressed and so the poles are continuous. We use the
method adopted by Perel and Eliashberg,28 which leads to
the relation,

1

�
�
m

	��m����m + �n�

=
P

2�i
� dxH�x���	+�x� − 	−�x�
�+�x + �n�

+ 	+�x + �n���+�x� − �−�x�
� , �17�

where 	�x��=	�x� i��, with �→0, can be any combina-
tion of products of Q�x� and V�x� terms, and H�x� is the
Bose-Einstein distribution function.

III. RESULTS AND DISCUSSIONS

We are now in a position to explicitly evaluate the
Green’s functions in Eq. �16� by summing over phonon and
electron frequencies, and analytically continuing the photon
frequencies into the upper half plane ��n→�n+ i��. As well
as calculating the energetic part of the Green’s functions, we
shall also determine the matrix elements. In general, there

are two types of transition matrix elements in this problem.
The first is the transition between states at either end of an
electron-phonon interaction. For massless Dirac fermions
which have two subbands, there are 24=16 possible matrix
elements. However, due to electron-hole symmetry, this
number is halved and we have eight possible terms. These
can be described quite generally by

Fij�q�Fkl
� �q� =

1

2
Zijkl�1 + ijei�� , �18�

where �=	�k+q�−	�k�, and we have introduced the per-
mutative Levi-Civita-type operator Zijk. . .=R�I� if ijk . . .
=1�−1�. The second kind of transition matrix is due to the
absorption/emission of a photon and is the current matrix
element. This term is described slightly differently as

vij�q� = Zijje
i�. �19�

Armed with all the necessary terms specific to graphene, we
obtain for the optical conductivity,

���� = �0����1 +
I���

�
� , �20�

where

I��� =� dq

�2��2

iP

2�
� dxnB��x�F�x,q� �21�

in which

F�x,q� = 16�
s,s�

� 1

4�2� dk�− �1 + ss� cos ��� cos 	k+q cos 	k

�2 +
�4s��k�k+q − �2�sin 	k+q sin 	k

�4�k
2 + �2��4�k+q

2 + �2� �
+ sin �� cos 	k+q sin 	k

�4�k
2 + �2�

−
sin 	k+q cos 	k

�4�k+q
2 + �2� � +

1

4
� �1 + ss� cos ��2cos 	k

2

�2 +
sin �2 sin 	k

2

4�k
2 + �2 �

� V�q,a + ��+Qs�s�q,a + ��+��V�q,a�+Qs�s�q,a�+ − V�q,a�−Qs�s�q,a�−
 +
1

4�2� dk��1 + ss� cos ��

��ss�
cos 	k+q cos 	k

�2 − ss�
�4s��k�k+q + �2�sin 	k+q sin 	k

�4�k
2 + �2��4�k+q

2 + �2�
−

cos 	k
2

�2 � + �1 − ss� cos ��sin 	k
2 �4�k

2 − �2�
�4�k

2 + �2�2

− sin �� cos 	k+q sin 	k

�4�k
2 + �2�

−
sin 	k+q cos 	k

�4�k+q
2 + �2�

− 2ss�
sin 	k cos 	k

�4�k
2 + �2� �� � ��V�q,a�+ − V�q,a�−
Qs�s�q,a + ��+

+ �Qs�s�q,a�+ − Qs�s�q,a�−
V�q,a + ��+� −
1

64�4�� dk� �1 + ss� cos ��2cos 	k
2

�2 +
�4�k

2 − �2�sin �2 sin 	k
2

�4�k
2 + �2�2 �

� ��V�q,a�+ − V�q,a�−
V�q,a + ��+Qs�s�q,a + ��+2 + �V�q,a�+Qs�s�q,a�+2 − V�q,a�−Qs�s�q,a�−2
V�q,a + ��+��2� ,

�22�
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where

Qs�s�q,a� =
nF��k+q,s�� − nF��k,s�

�k+q,s� − �k,s − a
. �23�

The form given by Eq. �22� is cumbersome but readily
calculated numerically. The electron-phonon interaction
strength for LO phonons is well known, and is given by
M2�0.035 /4 for small q, in our dimensionless units, which
are normalized by vF.29

In Fig. 3, we present the correction to the optical conduc-
tivity as a function of frequency, which can be attributed to
scattering by screened electron-phonon interactions. Note the
x axis is in the dimensionless units �=�� / t. First, we point
out that the difference between the screened results and the
unscreened results is negligible. Therefore, the effective in-
teraction given in Eq. �15� can be approximated by the bare
electron-phonon interaction with almost no loss of precision.
The spectra contains both interband and intraband terms. For
an intrinsic sample, these are characterized by a resonant and
continuous spectrum, respectively.

Both the continuum �intraband� and resonant �interband�
spectra are shown in Fig. 3�a�. The 30 K results are shown in
the inset due to their low magnitude. At 30 K, it can be seen
that the primary interband term ��=�LO� is relatively strong
but the multiphonon processes are negligible. For tempera-

tures �100 K, the continuum results dominate so strongly
that the resonant terms cannot be seen. At room temperature,
it can be seen that the correction to the universal conductiv-
ity due to electron-phonon scattering is as much as 0.2�0.
The resonant �interband� spectrum is shown in Fig. 3�b�, and
contains terms at �=n�LO /3, where n= �1,4
. The n=1 peak
is barely noticeable in the figure but can become quite
prominent at higher temperatures. However, the magnitudes
in Fig. 3�b� are negligible with the continuum spectrum
shown in Fig. 3�a� vastly dominating for all but the lowest
�T�100 K� and highest �T�500 K� temperatures.

The temperature dependence of the continuum and reso-
nant peaks at �=�LO /2 and �=�LO, respectively, is shown
in Fig. 4. It can be seen in �a� that with increasing tempera-
ture, there is an increased phonon population that facilitates
both intraband and interband transitions, and so the relation-
ship is roughly linear with increasing temperature. In the
inset of Fig. 4�a�, we show the log-log relationship of the
same data, and it can be seen that there is a significant kink
at T�30 K, above which the roughly linear increase slows
somewhat. In Fig. 4�b�, we present the temperature depen-
dence of the interband part of the same two dominant peaks.
It can be seen that the resonant peak at �=�LO increases
exponentially with temperature, with the interband part of
the continuum peak doing the same, only much more slowly.
The interband transitions then, follow an exponential in-
crease in transition rates whereas the intraband transitions

FIG. 3. �Color online� The electron-phonon-scattering-mediated
conductivity of graphene ��=�� / t�. In �a�, we present both the
intraband and the interband contributions. It is found that for T
�100 K, the intraband contributions dominate. The T=30 K re-
sults are shown in the inset due to their relatively small magnitude.
In �b�, we show the interband part which is shown to have several
multiphonon processes but the magnitude of this contribution is
relatively negligible except at very low and very high temperatures.

FIG. 4. �Color online� The temperature dependence of the mag-
nitude of the conductivity at �=�LO /2 �the continuum peak� and
�=�LO, �the dominant resonant peak� from Fig. 3. In �a�, we show
interband and intraband contributions together and obtain a roughly
linear relationship. When plotted in log-log form �inset�, we see that
there is a significant “kink” at T�30 K. When considering only
interband transitions as in �b�, both peaks display an exponential
temperature dependence.
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�which are the most dominant� are roughly linear. This ex-
plains the condition that interband terms dominate at both
high and low temperatures as the linear relationship will, in
general, cross the exponential one at two distinct points.

It is worth noting that the qualitative behavior of the
phonon-scattering-mediated conductance is similar at differ-
ent doping levels. The continuum and resonant structures are
essentially identical, however the interband terms also adopt
a continuum as well as a resonant structure at finite doping.
This is due to the peculiar gapless and linear band structure
of low-energy graphene. The doping dependence of the con-
tinuum and resonant peaks are shown in Fig. 5, and are not
surprisingly shown to increase with increasing doping mag-
nitude. This is due to the extra availability of intraband tran-
sitions. Due to electron-hole symmetry, the doping depen-
dence is symmetric about �=0. The full frequency
dependence at various chemical potentials is shown in the
inset of Fig. 5. We notice that the response behavior remains
qualitatively identical regardless of the doping level but the
magnitudes vary as explained above. Again this is not sur-

prising, as the subband structure is linear and so somewhat
self-similar at different doping levels.

IV. CONCLUSION

In this work, we have studied the effect of electron-LO-
phonon interaction on the high-frequency conductivity of
graphene in the regime of massless Dirac fermion. The cor-
rection due to the LO-phonon scattering to the universal op-
tical conductivity of graphene has been calculated which can
be as much as 20% at room temperature. The scattering con-
ductivity is dominated by a continuum intraband spectrum
which displays a peak at �=�LO /2. We have found that the
effect of screening �within the RPA approximation� is insig-
nificant, and that the electron-phonon interaction can be ap-
proximately described by a bare phonon propagator. This
greatly simplifies calculations and is in good agreement with
the dominant consensus within the field.

It was noted that there are also resonant interband terms
observed at �=n�LO /3, where n= �1,4
, which represent
single-phonon and multiphonon processes. The single-
phonon process �=�LO is dominant over the continuum re-
sults only at T�50 K, beyond which the continuum results
vastly dominate. However, it should be noted that the results
for T�50 K are extremely small, at around �0 /1000 or less.

The temperature and doping dependence of these results
was also investigated, and it was found that the spectra scale
roughly linearly with increasing temperature, and also in-
crease with doping magnitude. The doping dependence was
found to be symmetric about �=0 due to electron-hole
symmetry.

In conclusion, we have presented a qualitative and quan-
titative result on the electron-LO-phonon interaction in
graphene under the massless Dirac fermion approximation.
The temperature and frequency dependence of the electron-
LO-phonon-scattering-mediated conductivity has been ob-
tained and various multiphonon processes have been
identified.
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